На что делится число 23055 без остатка. Признаки делимости, или что не поделили числа. Список использованных источников


Продолжаем изучать признаки делимости . В этой статье разобран признак делимости на 4 . Сначала дана его формулировка и приведены примеры использования. Дальше показано доказательство признака делимости на 4 . В заключение рассмотрены подходы, позволяющие доказывать делимость на 4 чисел, заданных в виде значения буквенного выражения.

Навигация по странице.

Признак делимости на 4, примеры

Чтобы проверить, делится ли на 4 данное , проще всего выполнить деление непосредственно, из однозначных чисел на 4 делятся только 4 и 8 . Разделить двузначное натуральное число на 4 также не составит труда (даже при устном делении). Например, 24 делится на 4 без остатка, так как 24:4=6 , а 83 не делится нацело на 4 , так как 83:4=20 (ост. 3) (при необходимости смотрите статьи и ). Но чем больше цифр содержится в записи числа, тем «неприятнее» проводить деление.

Для более простой проверки делимости данного многозначного числа существует признак делимости на 4 , который сводит исследование данного числа a на его способность делиться на 4 к проверке на делимость однозначного или двузначного числа. Приведем формулировку этого признака. Целое число a делится на 4 , если число, составленное из двух последних цифр в записи числа a (в порядке их следования) делится на 4 ; если же составленное число не делится на 4 , то и число a не делится на 4 .

Рассмотрим примеры применения признака делимости на 4 .

Пример.

Какие из чисел −98 028 , 7 612 и 999 888 777 делятся на 4 ?

Решение.

Воспользуемся признаком делимости на 4 .

Две последние цифры −98 028 дают число 28 , так как 28 делится на 4 (28:4=7 ), то и число −98 028 делится на 4 .

Две последние цифры числа 7 612 составляют число 12 , а 12 делится на 4 (12:4=3 ), следовательно, 7 612 делится на 4 .

Наконец, две последние цифры числа 999 888 777 дают число 77 , так как 77 не делится нацело на 4 (77:4=19 (ост.1) ), то и исходное число не делится на 4 .

Ответ:

−98 028 и 7 612 .

А как применять признак делимости на 4 , если две последние цифры в записи числа представляют собой, например, 01 , 02 , 03 , …, 09 ? В этих случаях цифру 0 , стоящую слева, нужно отбросить, после чего останется однозначное число 1 , 2 , 3 , …, 9 .

Пример.

Делится ли числа 75 003 и −88 108 на 4 ?

Решение.

Посмотрим на две последние цифры в записи числа 75 003 - видим 03 , отбрасываем нуль слева и имеем число 3 . Так как 3 не делится на 4 , то по признаку делимости на 4 можно сделать вывод о том, что 75 003 не делится на 4 .

Аналогично две последние цифры в записи числа −88 108 составляют число 8 , а так как 8 делится на 4 , то и число −88 108 делится на 4 .

Ответ:

75 003 не делится на 4 , а −88 108 – делится.

Отдельно нужно сказать о числах, в записи которых справа две подряд цифры (или большее их количество) являются нулями. Приведем примеры таких чисел: 100 , 893 900 , 40 000 , 373 002 000 и т.п. Такие числа делятся на 4 . Обоснуем это.

Число 100 делится на 4 . Действительно, 100:4=25 . позволяет представить любое другое целое число a , запись которого оканчивается двумя нулями, в виде произведения a 1 ·100 , где число a 1 получается из числа a , если в его записи справа отбросить два нуля. Например, 588 300=5 883·100 и 30 000=300·100 . А произведение a 1 ·100 делится на 4 , так как содержит множитель 100 , который делится на 4 (смотрите свойства делимости). Так доказано, что любое целое число, в записи которого справа находятся два нуля, делится на 4 .

Доказательство признака делимости на 4

Для доказательства признака делимости на 4 нам понадобится следующее представление натурального числа a . Любое натуральное число a можно представить в виде a=a 1 ·100+a 0 , где число a 1 получается из числа a , если в его записи убрать две последние цифры, а число a 0 отвечает двум последним цифрам в записи числа a . Например, 5 431=54·100+31 . Если же число a однозначное или двузначное, то a=a 0 .

Также нам пригодятся два свойства делимости:

  • чтобы целое число a делилось на целое число b необходимо и достаточно, чтобы модуль числа a делился на модуль числа b ;
  • если в равенстве a=s+t все члены, кроме какого-то одного, делятся на некоторое целое число b , то и этот один член делится на b .

Теперь можно привести доказательство признака делимости на 4 , который мы предварительно переформулируем в виде необходимого и достаточного условия делимости на 4 .

Теорема.

Для делимости целого числа a на 4 необходимо и достаточно, чтобы число, отвечающее двум последним цифрам в записи числа a , делилось на 4 .

Доказательство.

Для a=0 теорема очевидна.

Для остальных целых a a есть число положительное, и его можно представить как , о чем мы сказали перед теоремой.

В конце первого пункта данной статьи мы показали, что произведение a 1 ·100 всегда делится на 4 . Если еще учесть приведенные перед теоремой свойства делимости, то приходим к следующим выводам.

Если число a делится на 4 , то и модуль числа a делится на 4 , тогда из равенства следует делимость на 4 числа a 0 . Этим доказана необходимость.

С другой стороны из делимости a 0 на 4 и равенства следует делимость на 4 модуля a , откуда следует делимость на 4 и самого числа a . Этим доказана достаточность.

Другие случаи делимости на 4

Иногда требуется проверить делимость на 4 целого числа, которое задано в виде значения некоторого выражения. В таких случаях провести непосредственное деление не представляется возможным. Также использование признака делимости на 4 возможно далеко не всегда. Как же быть в этих случаях?

Основная идея состоит в приведении исходного выражения к произведению нескольких множителей, один из которых делится на 4 . В этом случае на основании соответствующего свойства делимости можно будет сделать вывод о делимости исходного выражения на 4 .

Иногда получить такое представление помогает . Приведем пример для пояснения.

Пример.

Делится ли на 4 значение выражения при некотором натуральном n ?

Решение.

Представим 9 как 8+1 , после чего воспользуемся формулой бинома Ньютона:

Полученное произведение делится на 4 , так как содержит множитель 4 , а выражение в скобках представляет собой натуральное число. Следовательно,

Ответ:

Да.

Достаточно часто доказать делимость на 4 некоторого выражения позволяет . Покажем, как это делается, воспользовавшись условием предыдущего примера.

Пример.

Докажите, что делится на 4 при любом натуральном n .

Решение.

Покажем, что при n=1 значение выражения делится на 4 . Имеем , а 4 делится на 4 .

Предположим, что делится на 4 при n=k , то есть, будем считать, что делится на 4 .

Докажем, что делится на 4 при n=k+1 , учитывая, что делится на 4 .
.

В полученной сумме первое слагаемое делится на 4 , так как мы предположили, что делится на 4 . Второе слагаемое также делится на 4 , так как содержит множитель 4 . Следовательно, вся сумма делится на 4 .

Так методом математической индукции доказано, что делится на 4 при любом натуральном n .

Еще один подход к доказательству делимости некоторого выражения на 4 заключается в следующем. Если показать, что значение заданного выражения (с переменной n
В полученном произведении содержится множитель 4 , поэтому оно делится на 4 .

При n=4·m+2 получаем

В этом произведении содержится множитель 8 , делящийся на 4 , поэтому все произведение делится на 4 .

При n=4·m+3 имеем

Полученное произведение делится на 4 , так как содержит множитель 4 .

Так доказана делимость исходного выражения на 4 при любом целом n .

Список литературы.

  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.
  • Виноградов И.М. Основы теории чисел.
  • Михелович Ш.Х. Теория чисел.
  • Куликов Л.Я. и др. Сборник задач по алгебре и теории чисел: Учебное пособие для студентов физ.-мат. специальностей педагогических институтов.

Данная статья раскрывает смысл признака делимости на 6 . Будет введена его формулировка с примерами решений. Ниже приведем доказательство признака делимости на 6 на примере некоторых выражений.

Признак делимости на 6, примеры

Формулировка признака делимости на 6 включает в себя признак делимости на 2 и на 3: если число оканчивается на цифры 0 , 2 , 4 , 6 , 8 , а сумма цифр делится без остатка на 3 , значит, такое число делится на 6 ; при отсутствии хотя бы одного условия заданное число на 6 не поделится. Иначе говоря, число будет делиться на 6 , когда оно поделится на 2 и на 3 .

Применение признака делимости на 6 работает в 2 этапа:

  • проверка делимости на 2 , то есть число должно оканчиваться на 2 для явной делимости на 2, при отсутствии цифр 0 , 2 , 4 , 6 , 8 в конце числа деление на 6 невозможно;
  • проверка делимости на 3 , причем проверка производится при помощи деления суммы цифр числа на 3 без остатка, что означает возможность делимости всего числа на 3 ; исходя из предыдущего пункта видно, что все число делится на 6 , так как выполняются условия для деления на 3 и на 2 .
Пример 1

Проверить, может ли число 8 813 делиться на 6 ?

Решение

Очевидно, что для ответа нужно обратить внимание на последнюю цифру числа. Так как 3 не делится на 2 , отсюда следует, что одно условие не выполняется. Получаем, что заданное число на 6 не поделится.

Ответ: нет.

Пример 2

Узнать, возможно ли деление числа 934 на 6 без остатка.

Решение

Ответ: нет.

Пример 3

Проверить делимость на 6 числа − 7 269 708 .

Решение

Переходим к последней цифре числа. Так как ее значение равняется 8 , то первое условие выполнимо, то есть 8 делится на 2 . Переходим к проверке на выполнимость второго условия. Для этого складываем цифры заданного числа 7 + 2 + 6 + 9 + 7 + 0 + 8 = 39 . Видно, что 39 делится на 3 без остатка. То есть получаем (39: 3 = 13) . Очевидно, что оба условия выполняются, значит, что заданно число разделится на 6 без остатка.

Ответ: да, делится.

Чтобы проверить делимость на 6 , можно выполнить непосредственно деление на число 6 без проверки признаков делимости на него.

Доказательство признака делимости на 6

Рассмотрим доказательство признака делимости на 6 с необходимыми и достаточными условиями.

Теорема 1

Для того, чтобы целое число a делилось на 6 , необходимо и достаточно, чтобы это число делилось на 2 и на 3 .

Доказательство 1

Для начала необходимо доказать, что делимость числа a на 6 обуславливает его делимость на 2 и на 3 . Использование свойства делимости: если целое число делится на b , тогда произведение m·a с m, являющимся целым числом, также делится на b .

Отсюда следует, что при делении a на 6 можно использовать свойство делимости для того, чтобы представить равенство в виде a = 6 · q , где q является некоторым целым числом. Такая запись произведения говорит о том, что наличие множителя дает гарантию деления на 2 и на 3 . Необходимость доказана.

Для полного доказательства делимости на 6 , следует доказать достаточность. Для этого нужно доказать, что если число делится на 2 и на 3 , то оно делится и на 6 без остатка.

Необходимо применение основной теоремы арифметики. Если произведение нескольких целых положительных и не равных единицам множителей делится на простое число p , тогда хотя бы один множитель делится на p .

Имеем, что целое число a поделится на 2 , тогда существует такое число q , когда a = 2 · q . Это же выражение делится на 3 , где 2 · q делится на 3 . Очевидно, что 2 на 3 не делится. Из теоремы следует, что q должно делиться на 3 . Отсюда получим, что имеется целое число q 1 , где q = 3 · q 1 . Значит, полученное неравенство вида a = 2 · q = 2 · 3 · q 1 = 6 · q 1 говорит о том, что число a будет делиться на 6 . Достаточность доказана.

Другие случаи делимости на 6

В данном пункте рассматриваются способы доказательств делимости на 6 с переменными. Такие случаю предусматривают другой метод решения. Имеем утверждение: если один из целых множителей в произведении делится на заданное число, то и все произведение поделится на это число. Иначе говоря, при представленном заданном выражении в виде произведения хотя бы один из множителей делится на 6 , то все выражение будет делиться на 6 .

Такие выражения проще решать при помощи подстановки формулы бинома Ньютона.

Пример 4

Определить, будет ли выражение 7 n - 12 n + 11 делиться на 6 .

Решение

Представим число 7 в виде суммы 6 + 1 . Отсюда получаем запись вида 7 n - 12 n + 11 = (6 + 1) n - 12 n + 11 . Применим формулу бинома Ньютона. После преобразований имеем, что

7 n - 12 n + 11 = (6 + 1) n - 12 n + 11 = = (C n 0 · 6 n + C n 1 · 6 n - 1 + . . . + + C n n - 2 · 6 2 · 1 n - 2 + C n n - 1 · 6 · 1 n - 1 + C n n · 1 n) - 12 n + 11 = = (6 n + C n 1 · 6 n - 1 + . . . + C n n - 2 · 6 2 + n · 6 + 1) - 12 n + 11 = = 6 n + C n 1 · 6 n - 1 + . . . + C n n - 2 · 6 2 - 6 n + 12 = = 6 · (6 n - 1 + C n 1 · 6 n - 2 + . . . + C n n - 2 · 6 1 - n + 2)

Полученное произведение делится на 6 , потому как один из множителей равняется 6 . Отсюда следует, что n может быть любым целым натуральным числом, причем заданное выражение поделится на 6 .

Ответ: да.

Когда выражение задается при помощи многочлена, тогда следует произвести преобразования. Видим, что требуется прибегнуть к разложению многочлена на множители. получим, что переменная n примет вид и запишется как n = 6 · m , n = 6 · m + 1 , n = 6 · m + 2 , … , n = 6 · m + 5 , число m является целым. Если делимость при каждом n будет иметь смысл, то делимость заданного числа на 6 при любом значении целого n будет доказана.

Пример 5

Доказать, что при любом значении целого n выражение n 3 + 5 n поделится на 6 .

Решение

Для начала разложим на множители заданное выражение и получим, что n 3 + 5 n = n · (n 2 + 5) . Если n = 6 · m , тогда n · (n 2 + 5) = 6 m · (36 m 2 + 5) . Очевидно, что наличие множителя числа 6 говорит о том, что выражение делится на 6 для любого целого значения m .

Если n = 6 · m + 1 , получаем

n · (n 2 + 5) = (6 m + 1) · 6 m + 1 2 + 5 = = (6 m + 1) · (36 m 2 + 12 m + 1 + 5) = = (6 m + 1) · 6 · (6 m 2 + 2 m + 1)

Произведение будет делиться на 6 , так как имеет множитель, равняющийся 6 .

Если n = 6 · m + 2 , то

n · (n 2 + 5) = (6 m + 2) · 6 m + 2 2 + 5 = = 2 · (3 m + 1) · (36 m 2 + 24 m + 4 + 5) = = 2 · (3 m + 1) · 3 · (12 m 2 + 8 m + 3) = = 6 · (3 m + 1) · (12 m 2 + 8 m + 3)

Выражение будет делиться на 6 , так как в записи имеется множитель 6 .

Таким же образом выполняется и для n = 6 · m + 3 , n = 6 · m + 4 и n = 6 · m + 5 . При подстановке придем к тому, что при любом целом значении m эти выражения будут делиться на 6 . Отсюда следует, что заданное выражение поделится на 6 при любом целом значении n .

Теперь рассмотрим на примере решения при помощи задействования метода математической индукции. Будет произведено решение по условию первого примера.

Пример 6

Доказать, что выражение вида 7 n - 12 n + 11 будет делиться на 6 , где примет любые целые значения выражения.

Решение

Данный пример решим по методу математической индукции. Алгоритм выполним строго пошагово.

Произведем проверку делимости выражения на 6 при n = 1 . Тогда получаем выражение вида 7 1 - 12 · 1 + 11 = 6 . Очевидно, что 6 поделится само на себя.

Возьмем n = k в исходном выражении. Когда оно будет делиться на 6 , тогда можно считать, что 7 k - 12 k + 11 будет делиться на 6 .

Перейдем к доказательству деления на 6 выражения вида 7 n - 12 n + 11 при n = k + 1 . Отсюда получим, что необходимо доказать делимость выражения 7 k + 1 - 12 · (k + 1) + 11 на 6 , причем следует учитывать то, что 7 k - 12 k + 11 делится на 6 . Преобразуем выражение и подучим, что

7 k + 1 - 12 · (k + 1) + 11 = 7 · 7 k - 12 k - 1 = = 7 · (7 k - 12 k + 11) + 72 k - 78 = = 7 · (7 k - 12 k + 11) + 6 · (12 k - 13)

Очевидно, что первое слагаемое будет делиться на 6 , потому как 7 k - 12 k + 11 делится на 6 . Второе слагаемое также делится на 6 , потому как один из множителей равен 6 . Отсюда делаем вывод, что все условия соблюдены, а значит, что вся сумма будет делиться на 6 .

Метод математической индукции доказывает, что заданное выражение вида 7 n - 12 n + 11 будет делиться на 6 , когда n примет значение любого натурального числа.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Признаки делимости чисел на 2, 3, 4, 5, 6, 8, 9, 10, 11, 25 и другие числа полезно знать для быстрого решения задач на Цифровую запись числа. Вместо того, чтобы делить одно число на другое, достаточно проверить ряд признаков, на основании которых можно однозначно определить, делится ли одно число на другое нацело (кратно ли оно) или нет.

Основные признаки делимости

Приведем основные признаки делимости чисел :

  • Признак делимости числа на «2» Число делится нацело на 2, если число является четным (последняя цифра равна 0, 2, 4, 6 или 8)
    Пример: Число 1256 кратно 2, поскольку оно заканчивается на 6. А число 49603 не делится нацело на 2, поскольку оно заканчивается на 3.
  • Признак делимости числа на «3» Число делится нацело на 3, если сумма его цифр делится на 3
    Пример: Число 4761 делится на 3 нацело, поскольку сумма его цифр равна 18 и она делится на 3. А число 143 не кратно 3, поскольку сумма его цифр равна 8 и она не делится на 3.
  • Признак делимости числа на «4» Число делится нацело на 4, если последние две цифры числа равны нулю или число, составленное из двух последних цифр, делится на 4
    Пример: Число 2344 кратно 4, поскольку 44 / 4 = 11. А число 3951 не делится нацело на 4, поскольку 51 на 4 не делится.
  • Признак делимости числа на «5» Число делится нацело на 5, если последняя цифра числа равна 0 или 5
    Пример: Число 5830 делится нацело на 5, поскольку оно заканчивается на 0. А число 4921 не делится на 5 нацело, поскольку оно заканчивается на 1.
  • Признак делимости числа на «6» Число делится нацело на 6, если оно делится нацело на 2 и на 3
    Пример: Число 3504 кратно 6, поскольку оно заканчивается на 4 (признак делимости на 2) и сумма цифр числа равна 12 и она делится на 3 (признак делимости на 3). А число 5432 на 6 нацело не делится, хотя число заканчивается на 2 (соблюдается признак делимости на 2), однако сумма цифр равна 14 и она не делится на 3 нацело.
  • Признак делимости числа на «8» Число делится нацело на 8, если три последние цифры числа равны нулю или число, составленное из трех последних цифр числа, делится на 8
    Пример: Число 93112 делится нацело на 8, поскольку число 112 / 8 = 14. А число 9212 не кратно 8, поскольку 212 не делится на 8.
  • Признак делимости числа на «9» Число делится нацело на 9, если сумма его цифр делится на 9
    Пример: Число 2916 кратно 9, поскольку сумма цифр равна 18 и она делится на 9. А число 831 не делится на 9 нацело, поскольку сумма цифр числа равна 12 и она не делится на 9.
  • Признак делимости числа на «10» Число делится нацело на 10, если оно заканчивается на 0
    Пример: Число 39590 делится на 10 нацело, поскольку оно заканчивается на 0. А число 5964 не делится на 10 нацело, поскольку оно заканчивается не на 0.
  • Признак делимости числа на «11» Число делится нацело на 11, если сумма цифр, стоящих на нечетных местах, равна сумме цифр, стоящих на четных местах или суммы должны отличаться на 11
    Пример: Число 3762 делится нацело на 11, поскольку 3 + 6 = 7 + 2 = 9. А число 2374 на 11 не делится, поскольку 2 + 7 = 9, а 3 + 4 = 7.
  • Признак делимости числа на «25» Число делится нацело на 25, если оно заканчивается на 00, 25, 50 или 75
    Пример: Число 4950 кратно 25, поскольку оно заканчивается на 50. А 4935 не делится на 25, поскольку заканчивается на 35.

Признаки делимости на составное число

Чтобы узнать, делится ли заданное число на составное, нужно разложить это составное число на взаимно простые множители , признаки делимости которых известны. Взаимно простые числа - это числа, не имеющие общих делителей кроме 1. Например, число делится нацело на 15, если оно делится нацело на 3 и на 5.

Рассмотрим другой пример составного делителя: число делится нацело на 18, если оно делится нацело на 2 и 9. В данном случае нельзя раскладывать 18 на 3 и 6, поскольку они не являются взаимно простыми, так как имеют общий делитель 3. Убедимся в этом на примере.

Число 456 делится на 3, так как сумма его цифр равна 15, и делится на 6, так как оно делится и на 3 и на 2. Но если разделить 456 на 18 вручную, то получится остаток. Если же для числа 456 проверять признаки делимости на 2 и 9, сразу же видно, что оно делится на 2, но не делится на 9, так как сумма цифр числа равна 15 и она не делится на 9.

Признаки делимости

Замечание 2

Признаки делимости обычно применяют не к самому числу, а к числам, состоящим из цифр, которые участвуют в записи этого числа.

Признаки делимости на числа $2, 5$ и $10$ позволяют проверить делимость числа по одной лишь последней цифре числа.

Другие признаки делимости предполагают проведение анализа двух, трех или больше последних цифр числа. Например, признак делимости на $4$ требует анализа двузначного числа, которое составлено из двух последних цифр числа; признак делимости на 8 требует анализа числа, которое образовано тремя последними цифрами числа.

При использовании других признаков делимости необходимо проанализировать все цифры числа. Например, при использовании признака делимости на $3$ и признака делимости на $9$ необходимо найти сумму всех цифр числа, а затем проверить делимость найденной суммы на $3$ или на $9$ соответственно.

Признаки делимости на составные числа объединяют несколько других признаков. К примеру, признак делимости на $6$ представляет собой объединение признаков делимости на числа $2$ и $3$, а признак делимости на $12$ – на числа $3$ и $4$.

Применение некоторых признаков делимости требует проведения значительной вычислительной работы. В таких случаях может оказаться проще выполнить непосредственное деление числа $a$ на $b$, которое приведет к решению вопроса, можно ли разделить данное число $a$ на число $b$ без остатка.

Признак делимости на $2$

Замечание 3

Если последняя цифра целого числа делится на $2$ без остатка, то и число делится на $2$ без остатка. В других случаях данное целое число не делится на $2$.

Пример 1

Определить, какие из предложенных чисел делятся на $2: 10, 6 349, –765 386, 29 567.$

Решение .

Используем признак делимости на $2$, согласно которому можно сделать вывод, что на $2$ без остатка делятся числа $10$ и $–765 \ 386$, т.к. последней цифрой данных чисел является число $0$ и $6$ соответственно. Числа $6 \ 3494$ и $29 \ 567$ не делятся на $2$ без остатка, т.к. последняя цифра числа $9$ и $7$ соответственно.

Ответ : $10$ и $–765 \ 386$ делятся на $2$, $6 \ 349$ и $29 \ 567$ не делятся на $2$.

Замечание 4

Целые числа по результату их делимости на $2$ делят на четные и нечетные .

Признак делимости на $3$

Замечание 5

Если сумма цифр целого числа делится на $3$, то и само число делится на $3$, в других случаях число на $3$ не делится.

Пример 2

Проверить, делится ли число $123$ на $3$.

Решение .

Найдем сумму цифр числа $123=1+2+3=6$. Т.к. полученная сумма $6$ делится на $3$, то по признаку делимости на $3$ число $123$ делится на $3$.

Ответ : $123⋮3$.

Пример 3

Проверить, делится ли число $58$ на $3$.

Решение .

Найдем сумму цифр числа $58=5+8=13$. Т.к. полученная сумма $13$ не делится на $3$, то по признаку делимости на $3$ число $58$ не делится на $3$.

Ответ : $58$ не делится на $3$.

Иногда для проверки делимости числа на 3 нужно несколько раз применить признак делимости на $3$. Обычно такой подход используется в случае применения признаков делимости к очень большим числам.

Пример 4

Проверить, делится ли число $999 \ 675 \ 444$ на $3$.

Решение .

Найдем сумму цифр числа $999 \ 675 \ 444 = 9 + 9 + 9 + 6 + 7 + 5 + 4 + 4 + 4 = 27 + 18 + 12 = 57$. Если по полученной сумме сложно сказать, делится ли она на $3$, нужно еще раз применить признак делимости и найти сумму цифр полученной суммы $57=5+7=12$. Т.к. полученная сумма $12$ делится на $3$, то по признаку делимости на $3$ число $999 \ 675 \ 444$ делится на $3$.

Ответ : $999 \ 675 \ 444 ⋮3$.

Признак делимости на $4$

Замечание 6

Целое число делится на $4$, если число, которое составлено из двух последних цифр данного числа (в порядке их следования) делится на $4$. В обратном случае данное число не делится на$4$.

Пример 5

Проверить, делятся ли числа $123 \ 567$ и $48 \ 612$ на $4$.

Решение .

Двухзначное число, которое составлено из двух последних цифр числа $123 \ 567$, составляет $67$. Число $67$ не делится на $4$, т.к. $67\div 4=16 (ост. 3)$. Значит и число $123 \ 567$ согласно признаку делимости на $4$ не делится на $44.44.

Двухзначное число, которое составлено из двух последних цифр числа $48 \ 612$, составляет $12$. Число $12$ делится на $4$, т.к. $12\div 4=3$. Значит и число $48 \ 612$ согласно признаку делимости на $4$ делится на $4$.

Ответ : $123 \ 567$ не делится на $4, 48 \ 612$ делится на $4$.

Замечание 7

Если двумя последними цифрами заданного числа являются нули, то число делится на $4$.

Такой вывод делается вследствие того, что данное число делится на $100$, а т.к. $100$ делится на $4$, то и число делится на $4$.

Признак делимости на $5$

Замечание 8

Если последней цифрой целого числа является $0$ или $5$, то данное число делится на $5$ и не делится на $5$ во всех остальных случаях.

Пример 6

Определить, какие из предложенных чисел делятся на $5: 10, 6 349, –765 385, 29 567.$

Решение .

Используем признак делимости на $5$, согласно которому можно сделать вывод, что на $5$ без остатка делятся числа $10$ и $–765 385$, т.к. последней цифрой данных чисел является число $0$ и $5$ соответственно. Числа $6 \ 349$ и $29 \ 567$ не делятся на $5$ без остатка, т.к. последняя цифра числа $9$ и $7$ соответственно.

Признаки делимости от 2 до 19 и 24, 25, 36 с примерами

Признаки делимости на 2

  • На 2 делятся все четные натуральные числа или последняя цифра должна быть четной - 0, 2, 4, 6, 8.
  • Например: 24, 48, 94, 172, 1670, 67838.

Признаки делимости на 3

  • На 3 делятся все натуральные числа, сумма цифр которых кратна 3.
  • Например: 16734, сумма цифр = 1+6+7+3+4=21; 21: 3 = 7 - делится на 3

Признаки делимости на 4

  • На 4 делятся все натуральные числа, две последние цифры которых составляют нули или число, кратное 4.
  • Например: 1024 делится на 4, так как 24 делится на 4

Признаки делимости на 5

  • На 5 делятся все натуральные числа, оканчивающиеся на 5 или 0.
  • Например: 125 делится на 5, поскольку последняя цифра 5

Признаки делимости на 6

  • На 6 делятся те натуральные числа, которые делятся на 2 и на 3 одновременно (все четные числа, которые делятся на 3).
  • Например: 126 делится 6, так как 126 - четное и сумма = 1 + 2 + 6 = 9 кратна 3

Признаки делимости на 7

  • На 7 делятся те натуральные числа, у которых результат вычитания удвоенной последней цифры из этого числа без последней цифры делится на 7
  • Например: 17948 делится на 7, 1794 - (2 · 8) = 1778 большое число, 177 - (8 · 2) = 161 повторяем снова , 16 - (1 · 2) = 14

Признаки делимости на 8

  • Числа делятся на 8, если три его последние цифры делятся на 8.
  • Например: 1568 делится на 8 - 568 кратно 8

Признаки делимости на 9

  • На 9 делятся те натуральные числа, сумма цифр которых кратна 9.
  • Например: 1179 - сумма =1 + 1 + 7 + 9 = 18, делится на 9

Признаки делимости на 10

  • На 10 делятся все натуральные числа, оканчивающиеся на 0.
  • Например: 1570 - делится на 10, последняя цифра 0

Признаки делимости на 11

  • На 11 делятся только те натуральные числа, у которых сумма цифр, занимающих четные места, равна сумме цифр, занимающих нечетные места
  • Например: 105787 делится на 11 - сумма 1 + 5 + 8 = 14 равна 0 + 7 + 7 = 14;

Признаки делимости на 12

  • Число делится на 12 тогда и только тогда, когда она делится на 3 и на 4 одновременно.
  • Например: 168 - делится на 3 и 4, следовательно делится на 12

Признаки делимости на 13

  • Число делится на 13 тогда и только тогда, когда число его десятков, сложенное с учетверённым числом единиц, кратно 13.
  • Например: 221 делится на 13: 22 + 1· 4 = 26 кратно 13

Признаки делимости на 14

  • Число делится на 14 тогда и только тогда, когда оно делится на 2 и на 7.

Признаки делимости на 15

  • Число делится на 15 тогда и только тогда, когда оно делится на 3 и на 5.

Признаки делимости на 16

  • Число делится не 16 только тогда, когда 4 последние цифры делятся на 16
  • Например: 24576 делится 16, так как 4576:16 = 286

Признаки делимости на 17

  • Число делится на 17, если разность числа кроме последней цифры справа и последней цифры умноженную на пять кратно 17.
  • Например: 272 делится на 17, 27 - 2 · 5 = 17 кратно 17

Признаки делимости на 18

  • На 18 делятся те натуральные числа, которые четные и сумма цифр делится на 9.
  • Например: 5508 - сумма = 5 + 5 + 0 + 8 = 18 кратна 9 и четное число, следовательно делится на 18

Признаки делимости на 19

  • Число делится на 19 тогда и только тогда, когда число его десятков, сложенное с удвоенным числом единиц, кратно 19
  • Например: 646 - 64 + (6 · 2) = 76 делится на 19

Признаки делимости на 24

  • Число, делится на 24, если сумма всех цифр данного числа делится на 3 и последние три цифры данного числа делится на 8.
  • Например: 1512 делится на 24 - сумма 1 + 5 + 1 + 2 = 9 кратна 3 и 512: 8 = 64

Признаки делимости на 25

  • На 25 делятся числа, если две последние цифры делятся на 25.
  • Например: 650 - 50: 25 = 2; 1475 - 75: 25 = 3